3,538 research outputs found

    Unparticle inspired corrections to the Gravitational Quantum Well

    Full text link
    We consider unparticle inspired corrections of the type (RGr)β{(\frac{R_{G}}{r})}^\beta to the Newtonian potential in the context of the gravitational quantum well. The new energy spectrum is computed and bounds on the parameters of these corrections are obtained from the knowledge of the energy eigenvalues of the gravitational quantum well as measured by the GRANIT experiment.Comment: Revtex4 file, 4 pages, 2 figures and 1 table. Version to match the one published at Physical Review

    Bound state equivalent potentials with the Lagrange mesh method

    Get PDF
    The Lagrange mesh method is a very simple procedure to accurately solve eigenvalue problems starting from a given nonrelativistic or semirelativistic two-body Hamiltonian with local or nonlocal potential. We show in this work that it can be applied to solve the inverse problem, namely, to find the equivalent local potential starting from a particular bound state wave function and the corresponding energy. In order to check the method, we apply it to several cases which are analytically solvable: the nonrelativistic harmonic oscillator and Coulomb potential, the nonlocal Yamaguchi potential and the semirelativistic harmonic oscillator. The potential is accurately computed in each case. In particular, our procedure deals efficiently with both nonrelativistic and semirelativistic kinematics.Comment: 6 figure

    Orthogonal Polynomials from Hermitian Matrices

    Get PDF
    A unified theory of orthogonal polynomials of a discrete variable is presented through the eigenvalue problem of hermitian matrices of finite or infinite dimensions. It can be considered as a matrix version of exactly solvable Schr\"odinger equations. The hermitian matrices (factorisable Hamiltonians) are real symmetric tri-diagonal (Jacobi) matrices corresponding to second order difference equations. By solving the eigenvalue problem in two different ways, the duality relation of the eigenpolynomials and their dual polynomials is explicitly established. Through the techniques of exact Heisenberg operator solution and shape invariance, various quantities, the two types of eigenvalues (the eigenvalues and the sinusoidal coordinates), the coefficients of the three term recurrence, the normalisation measures and the normalisation constants etc. are determined explicitly.Comment: 53 pages, no figures. Several sentences and a reference are added. To be published in J. Math. Phy

    Continuum and Symmetry-Conserving Effects in Drip-line Nuclei Using Finite-range Forces

    Full text link
    We report the first calculations of nuclear properties near the drip-lines using the spherical Hartree-Fock-Bogoliubov mean-field theory with a finite-range force supplemented by continuum and particle number projection effects. Calculations were carried out in a basis made of the eigenstates of a Woods-Saxon potential computed in a box, thereby garanteeing that continuum effects were properly taken into account. Projection of the self-consistent solutions on good particle number was carried out after variation, and an approximation of the variation after projection result was used. We give the position of the drip-lines and examine neutron densities in neutron-rich nuclei. We discuss the sensitivity of nuclear observables upon continuum and particle-number restoration effects.Comment: 5 pages, 3 figures, Phys. Rev. C77, 011301(R) (2008

    Effective mass in quasi two-dimensional systems

    Full text link
    The effective mass of the quasiparticle excitations in quasi two-dimensional systems is calculated analytically. It is shown that the effective mass increases sharply when the density approaches the critical one of metal-insulator transition. This suggests a Mott type of transition rather than an Anderson like transition.Comment: 3 pages 3 figure

    On Duffin-Kemmer-Petiau particles with a mixed minimal-nonminimal vector coupling and the nondegenerate bound states for the one-dimensional inversely linear background

    Full text link
    The problem of spin-0 and spin-1 bosons in the background of a general mixing of minimal and nonminimal vector inversely linear potentials is explored in a unified way in the context of the Duffin-Kemmer-Petiau theory. It is shown that spin-0 and spin-1 bosons behave effectively in the same way. An orthogonality criterion is set up and it is used to determine uniquely the set of solutions as well as to show that even-parity solutions do not exist.Comment: 10 page

    The peremptory influence of a uniform background for trapping neutral fermions with an inversely linear potential

    Full text link
    The problem of neutral fermions subject to an inversely linear potential is revisited. It is shown that an infinite set of bound-state solutions can be found on the condition that the fermion is embedded in an additional uniform background potential. An apparent paradox concerning the uncertainty principle is solved by introducing the concept of effective Compton wavelength

    Any l-state solutions of the Woods-Saxon potential in arbitrary dimensions within the new improved quantization rule

    Full text link
    The approximated energy eigenvalues and the corresponding eigenfunctions of the spherical Woods-Saxon effective potential in DD dimensions are obtained within the new improved quantization rule for all ll-states. The Pekeris approximation is used to deal with the centrifugal term in the effective Woods-Saxon potential. The inter-dimensional degeneracies for various orbital quantum number ll and dimensional space DD are studied. The solutions for the Hulth\'{e}n potential, the three-dimensional (D=3), the % s-wave (l=0l=0) and the cases are briefly discussed.Comment: 15 page

    Absorption in atomic wires

    Full text link
    The transfer matrix formalism is implemented in the form of the multiple collision technique to account for dissipative transmission processes by using complex potentials in several models of atomic chains. The absorption term is rigorously treated to recover unitarity for the non-hermitian hamiltonians. In contrast to other models of parametrized scatterers we assemble explicit potentials profiles in the form of delta arrays, Poschl-Teller holes and complex Scarf potentials. The techniques developed provide analytical expressions for the scattering and absorption probabilities of arbitrarily long wires. The approach presented is suitable for modelling molecular aggregate potentials and also supports new models of continuous disordered systems. The results obtained also suggest the possibility of using these complex potentials within disordered wires to study the loss of coherence in the electronic localization regime due to phase-breaking inelastic processes.Comment: 14 pages, 15 figures. To appear in Phys. Rev.

    Arbitrary l-state solutions of the rotating Morse potential by the asymptotic iteration method

    Full text link
    For non-zero â„“\ell values, we present an analytical solution of the radial Schr\"{o}dinger equation for the rotating Morse potential using the Pekeris approximation within the framework of the Asymptotic Iteration Method. The bound state energy eigenvalues and corresponding wave functions are obtained for a number of diatomic molecules and the results are compared with the findings of the super-symmetry, the hypervirial perturbation, the Nikiforov-Uvarov, the variational, the shifted 1/N and the modified shifted 1/N expansion methods.Comment: 15 pages with 1 eps figure. accepted for publication in Journal of Physics A: Mathematical and Genera
    • …
    corecore